
Bryan Cantrill
Solaris Kernel Development
Sun Microsystems
http://blogs.sun.com/bmc

DTrace:
Opening the Kimono

The Problem
● As systems have grown more complex,

performance problems are increasingly
not seen in a system until it is deployed
in production...

● ...but performance analysis tools are
aimed at the developer in development

● Production environments left with
crude, process-centric tools – of little
use on systemic problems

Solution Constraints
● Constraints on performance analysis

infrastructure in production:
> Must have zero probe effect when not enabled
> Must be absolutely safe – accidental misuse

must not induce system failure!
● To have systemic scope:
> Entire system must be instrumentable – kernel

and applications!
> Must be able to easily prune and coalesce data

to highlight systemic trends

The DTrace Solution
● New facility in Solaris for dynamic

instrumentation of production systems
● DTrace features:
> Dynamic instrumentation: zero probe effect when

disabled
> Unified instrumentation: can instrument both

kernel and running apps such that data and
control flow can be followed across boundaries

> Arbitrary-context kernel instrumentation: can
instrument delicate in-kernel subsystems like
synchronization, CPU scheduling

DTrace Features, cont.
> Data integrity: if data cannot be recorded for any

reason, errors are always reported; absence of
errors guarantees sound data

> Arbitrary actions: actions that can be taken at
any point of instrumentation are not defined a
priori; user can specify arbitrary action

> Predicates: predicate mechanism allows actions
to only be taken when user-specified conditions
are met

> High-level control language: predicates and
actions are specified in a C-like language that
supports all ANSI C operators, allows access to
kernel variables and types

DTrace Features, cont.
> User-defined variables: support for global and

thread-local variables, associative arrays
> Data aggregation: scalable mechanism for

aggregating data based on an arbitrary tuple
> Speculative tracing: mechanism for speculatively

record data, deferring the decision to commit or
discard the data

> Heterogeneous instrumentation: separation of
instrumentation methodology from data
processing framework allows for disjoint
instrumentation techniques

DTrace Features, cont.
> Scalable architecture: allows for tens of

thousands of probes, provides primitives for
efficiently specifying subsets of probes

> Virtualized consumers: everything virtualized on
a per-consumer basis; no limit on concurrent
DTrace consumers

> Boot-time tracing: instrumentation can be active
during operating system boot

> Scripting capacity: DTrace may be used either on
the command line via dtrace(1M) or in scripts
with a leading “#!/usr/sbin/dtrace”

Probes
● A probe is a point of instrumentation
● A probe is made available by a provider
● Each probe identifies the module and

function that it instruments
● Each probe has a name
● These four attributes define a 4-tuple

that uniquely identifies each probe

Providers
● A provider represents a methodology

for instrumenting the system
● Providers make probes available to the

DTrace framework
● DTrace informs providers when a probe

is to be enabled
● Providers transfer control to in-kernel

DTrace framework when an enabled
probe is hit

Providers, cont.
● DTrace has over a dozen providers, e.g.:
> The function boundary tracing (FBT) provider can

dynamically instrument every function entry and
return in the kernel

> The syscall provider can dynamically instrument
the system call table

> The lockstat provider can dynamically instrument
the kernel synchronization primitives

> The pid provider can dynamically instrument any
instruction in any running application

Actions and Predicates
● Actions are taken when a probe fires
● Actions often record data
● Predicates allow actions to only be

taken when certain conditions are met
● Actions will only be taken if the

predicate expression evaluates to true

The D Language
● Actions and predicates are specified in

the D programming language
● D is a C-like language specific to DTrace
> Complete access to kernel C types
> Complete access to statics and globals
> Complete support for ANSI-C operators
> Support for strings as first-class citizen
> Support for thread-local variables
> Support for associative arrays
> ...

D Program Structure
● Consists of one or more clauses
● Each clause has the form:

probe-descriptions
/predicate/
{
 action-statements
}

● Probes are specified using the form:
 provider:module:function:name

● Omitted fields match any value

D Intermediate Form
● D is compiled at user-level into DIF
● DIF is a small RISC instruction set
● DIF is sent into the kernel, emulated

when probe fires
● DIF emulation is completely safe:
> No backwards branches
> DIF emulator refuses to perform misaligned

loads, divides-by-zero, etc.
> Invalid loads detected post-load by kernel's fault

handler, handled gracefully

Aggregations
● When trying to understand suboptimal

performance, one often looks for
patterns that point to bottlenecks

● When looking for patterns, one often
doesn't want to study each datum –
one wishes to aggregate the data and
look for larger trends

● Traditionally, one has had to use
conventional tools (e.g. awk(1), perl(1))

Aggregations, cont.
● DTrace supports the aggregation of

data as a first class operation
● An aggregating function is a function f

(x), where x is a set of data, such that:
●

f(f(x0)  f(x1)  ...  f(xn)) = f(x0  x1  ...  xn)

● E.g., count, sum, maximum, and
minimum are aggregating functions;
median, and mode are not

Aggregations, cont.
● An aggregation is the result of an

aggregating function keyed by an
arbitrary n-tuple

● D syntax for using an aggregation:
 @identifier[keys] = aggfunc(args);

● Valid aggfunc:
 count min avg quantize
 sum max stddev lquantize

● By default, aggregation results are
printed when dtrace(1M) exits

Semantic Instrumentation
● Through its various providers, DTrace

allows the system to be instrumented
nearly arbitrarily...

● ...but making the most use of this
requires detailed knowledge of the
system's implementation

● We want to instrument the system not
in terms of its implementation, but in
terms of its semantics

Execution Semantics
● DTrace allows providers to define the

interface stability of their probes
● Using statically-defined probes,

semantically meaningful points in
subsystem execution can be bundled
together as a stable provider

● Having stable execution semantics is
not enough – one must also have stable
data semantics!

Data Semantics
● Providers can define translators that

describe the translation from an
implementation-dependent structure to
an implementation-neutral one

● Probes can have translated arguments,
allowing for stable data semantics

● Allows providers to not merely reflect
the implementation, but to present a
semantically stable abstraction above it

Stable Providers
● We have built several stable providers

in the kernel:
> sched provider for CPU scheduling
> proc provider for process management
> io provider for I/O
> sysinfo provider for system statistics
> vminfo provider for VM statistics
> ...

User-level Stable Providers
● The system is not merely the kernel!
● Want the entire system to be

instrumented in ways that have stable,
meaningful semantics

● We have infrastructure for user-level
system components to define their own
stable providers

● Stable providers can be implemented in
terms of the user-level statically
defined tracing (USDT) provider

Stable Providers
● Many open source projects can benefit

from the addition of stable providers
● A stable user-level provider allows this:

pid$target::__1cLmysql_parse6FpnDTHD_pcI_v_:entry
{

@[copyinstr(arg1)] = count();
}

To become this:
mysql:::query-start
{

@[args[0]] = count();
}

Provider Example: PHP
● Recently (as in, last night) Wez Furlong

from the PHP team developed an
experimental DTrace provider for PHP

● Exports two probes:
function-entry upon entry to a PHP function
function-return upon return from a PHP

function
● Each probe has three arguments:
> The name of the function
> The name of the file
> The line number of the call site

PHP, cont.
● For somone who understands PHP

internals, implementing the provider
was relatively easy...

● ...and it allows entirely new dimensions
of observability into PHP:
> Allows for the entire stack to be understood –

from PHP through native library code and into
the operating system kernel

> Allows systemic analysis; one can aggregate
across multiple PHP processes!

> Allows use in production!

Working on DTrace Itself
● DTrace itself is open source – and

there's lots of work still to do...
● Some small-to-medium sized projects:
> DTrace providers for Perl, Python
> libdtrace binding for Perl and/or Python
> libdtrace binding/interface for mdb(1)
> Improve fault messages to indicate line number

of faulting D statement (instead of just DIF offset)
> print action equivalent to mdb's ::print
> Floating point support in D
> Many more – just ask!

Porting DTrace
● DTrace – like all of OpenSolaris – is

licensed under the CDDL
● CDDL is a cleaned-up MPL, allowing it

to mix with a wide variety of both open
source and proprietary systems...

● ...but according to the FSF, restrictions
in the GPL prevent mixing CDDL and GPL

● We welcome porting DTrace to other
systems – and we're happy to help out

Porting DTrace, cont.
● Porting to a new system would be non-

trivial – but by no means impossible
● Necessary expertise:
> Kernel runtime linker
> Low-level kernel implementation details (fault

handling, cross calls, atomics, etc.)
> Application debugger infrastructure (process

control, symbol lookup, etc.)
> Encoding for kernel type information

● Porting stable providers would require
some additional subsystem expertise

Conclusions
● DTrace is a powerful new facility for

systemic diagnosis in production
● If you're a developer, DTrace will

change the way you debug software...
● And by defining your own stable

provider, DTrace can become much
more useful to your users

● There is much work to be done on
DTrace itself – contributors welcome!

DTrace Availability
● DTrace is a part of OpenSolaris; source,

binaries available at opensolaris.org
● opensolaris.org has a community site

dedicated to DTrace:
 http://opensolaris.org/os/community/dtrace
(Or google “dtrace” + “I'm feeling lucky”)

● Community is quite active; DTrace
discussion list has over 500 subscribers!

● Documentation (400+ pages!) available
at docs.sun.com

DTrace:
Opening the Kimono
Bryan Cantrill
Solaris Kernel Development
Sun Microsystems
http://blogs.sun.com/bmc

